This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320076 #30 Nov 22 2018 02:46:05 %S A320076 1,1,2,1,1,2,32,1 %N A320076 a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime. %C A320076 a(11) > 6360. %C A320076 a(11) > 12000. - _Chai Wah Wu_, Nov 15 2018 %C A320076 a(19) = a(20) = a(26) = a(30) = a(31) = a(33) = a(40) = 1, a(44) = a(48) = a(49) = 2, a(42) = 3, a(14) = 5, a(24) = a(46) = 7, a(12) = 8, a(13) = 17, a(47) = 19, a(25) = 49, a(38) = 54, a(37) = 179, a(16) = 207, a(22) = 676, a(18) = 690, a(43) = 880, a(17) = 1068, a(34) = 1199. - _Chai Wah Wu_, Nov 20 2018 %C A320076 a(15) = 2590, a(23) = 3734. - _Chai Wah Wu_, Nov 21 2018 %t A320076 a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] - Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 3, 10}] (* _Vaclav Kotesovec_, Nov 14 2018 *) %o A320076 (PARI) %o A320076 a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p-q), return(i)))}; %Y A320076 Cf. A320077. %K A320076 nonn,more %O A320076 3,3 %A A320076 _Dmitry Ezhov_, Oct 05 2018