This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320086 #14 Feb 16 2025 08:33:56 %S A320086 1,1,1,1,1,1,4,4,4,4,2,1,1,1,2,16,16,8,8,16,16,16,4,16,1,16,4,16,64, %T A320086 64,64,64,64,64,64,64,16,8,8,8,1,8,8,8,16,256,256,64,64,128,128,64,64, %U A320086 256,256,256,32,256,16,128,1,128,16,256,32,256 %N A320086 Triangle read by rows, 0 <= k <= n: T(n,k) is the denominator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; numerator is A320085. %H A320086 G. C. Greubel, <a href="/A320086/b320086.txt">Rows n = 0..50 of the triangle, flattened</a> %H A320086 Rita T. Farouki, <a href="https://doi.org/10.1016/j.cagd.2012.03.001">The Bernstein polynomial basis: A centennial retrospective</a>, Computer Aided Geometric Design Vol. 29 (2012), 379-419. %H A320086 Ron Goldman, <a href="https://doi.org/10.1016/B978-1-55860-354-7.X5000-4">Pyramid Algorithms. A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling</a>, Morgan Kaufmann Publishers, 2002, Chap. 5. %H A320086 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernsteinPolynomial.html">Bernstein Polynomial</a> %H A320086 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bernstein_polynomial">Bernstein polynomial</a> %F A320086 T(n, k) = denominator of 2*A141692(n,k)/A000079(n). %F A320086 T(n, k) = 2^(n-1)/gcd(n*(binomial(n-1, k-1) - binomial(n-1, k)), 2^(n-1)). %F A320086 T(n, n-k) = T(n,k). %F A320086 T(n, 0) = A084623(n), n > 0. %F A320086 T(2*n+1, 1) = A000302(n). %e A320086 Triangle begins: %e A320086 1; %e A320086 1, 1; %e A320086 1, 1, 1; %e A320086 4, 4, 4, 4; %e A320086 2, 1, 1, 1, 2; %e A320086 16, 16, 8, 8, 16, 16; %e A320086 16, 4, 16, 1, 16, 4, 16; %e A320086 64, 64, 64, 64, 64, 64, 64, 64; %e A320086 16, 8, 8, 8, 1, 8, 8, 8, 16; %e A320086 256, 256, 64, 64, 128, 128, 64, 64, 256, 256; %e A320086 256, 32, 256, 16, 128, 1, 128, 16, 256, 32, 256; %e A320086 ... %p A320086 T:=proc(n,k) 2^(n-1)/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=1..11); # _Muniru A Asiru_, Oct 06 2018 %t A320086 Table[Denominator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten %o A320086 (Maxima) %o A320086 T(n, k) := 2^(n - 1)/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$ %o A320086 tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ %o A320086 (Sage) %o A320086 def A320086(n,k): return denominator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1)) %o A320086 flatten([[A320086(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 19 2021 %Y A320086 Inspired by A141692. %Y A320086 Cf. A007318, A128433, A128434, A319861, A319862, A320085. %K A320086 nonn,tabl,easy,frac %O A320086 0,7 %A A320086 _Franck Maminirina Ramaharo_, Oct 05 2018