This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320107 #21 Nov 22 2018 18:16:50 %S A320107 1,1,1,1,2,2,2,1,1,2,2,2,2,2,2,1,2,3,2,2,2,2,2,2,3,2,1,2,2,4,2,1,2,2, %T A320107 4,3,2,2,2,2,2,4,2,2,2,2,2,2,3,3,2,2,2,4,4,2,2,2,2,4,2,2,2,1,4,4,2,2, %U A320107 2,4,2,3,2,2,3,2,4,4,2,2,1,2,2,4,4,2,2,2,2,6,4,2,2,2,4,2,2,3,2,3,2,4,2,2,4 %N A320107 a(n) = A001227(A252463(n)). %C A320107 Records 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, ... occur at n = 1, 5, 18, 30, 90, 210, 450, 630, 1890, 3150, 5670, 6930, 20790, 34650, 62370, ... %H A320107 Antti Karttunen, <a href="/A320107/b320107.txt">Table of n, a(n) for n = 1..16384</a> %H A320107 Antti Karttunen, <a href="/A320107/a320107.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A320107 a(n) = A001227(A252463(n)). %F A320107 a(1) = a(2) = 1; for n > 2, a(n) = a(n/2) when n == 0 mod 4, a(n) = A051064(n) * a(n/2) when n == 2 mod 4, a(n) = a(A064989(n)), when n == 3 mod 6, otherwise a(n) = A055457(n) * a(A064989(n)). %F A320107 For n > 2, let p = A252463(n). If p is even, then a(n) = a(p), if p is odd, then a(n) = A051064(p) * a(p). %o A320107 (PARI) %o A320107 A001227(n) = numdiv(n>>valuation(n, 2)); %o A320107 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A320107 A252463(n) = if(!(n%2),n/2,A064989(n)); %o A320107 A320107(n) = A001227(A252463(n)); %o A320107 (PARI) %o A320107 A051064(n) = if(n<1, 0, 1+valuation(n, 3)); %o A320107 A320107(n) = if(n<=2, 1, my(p=A252463(n)); if(!(p%2), A320107(p), A051064(p)*A320107(p))); %o A320107 (PARI) %o A320107 A051064(n) = if(n<1, 0, 1+valuation(n, 3)); %o A320107 A055457(n) = if(n<1, 0, 1+valuation(n, 5)); %o A320107 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A320107 A320107(n) = if(n<=2, 1, if(!(n%4), A320107(n/2), if(2==(n%4), A051064(n)*A320107(n/2), if(!(n%3), A320107(A064989(n)), A055457(n)*A320107(A064989(n)))))); %Y A320107 Cf. A001227, A005940, A051064, A055457, A252463, A320106 (Möbius transform). %Y A320107 Cf. also A320111 and A319699, A319700, A319703, A319989. %K A320107 nonn %O A320107 1,5 %A A320107 _Antti Karttunen_, Nov 22 2018