This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320122 #30 Mar 21 2023 15:35:14 %S A320122 12,30,390,1170,1200,1560,2340,2760,3120,3900,4680,6120,6240,7680, %T A320122 7800,8460,10020,10140,10950,11580,15090,15480,17160,17580,18360, %U A320122 19140,20280,20700,20940,21480,23040,23280,24060,24210,24960,26550,28740,29250,29520,29670,30060,31080,32400 %N A320122 Numbers that are not Keith numbers in any base. %C A320122 A number N >= 2 is a Keith number in a base b <= N if the Fibonacci sequence u(i) whose initial terms are the t digits of N in the base b, and later terms are given by rule that u(i) = sum of t previous terms, contains N itself. Here a(n) is the n-th number N that is not a Keith number in any base b <= N. %H A320122 Arie Bos, <a href="https://www.researchgate.net/publication/280932154_Inventory_of_n-step_Fibonacci_sequences">Inventory of n-step Fibonacci sequences</a>, 2015. %e A320122 a(1) = 12 because 12 is not a Keith number in any base from 2 to 12, while all previous numbers are in some base. %e A320122 For example, with b = 2, the sequence is : 1, 1, 0, 0, 2, 3, 5, 10, 20, ...; it doesn't contain 12. See A251703. %p A320122 fibo:=proc(n, b) local L,m,M,k: %p A320122 L:=convert(n,base,b):m:=nops(L):M:=seq(L[m+1-k],k=1..m): %p A320122 while M[m]<n do M:=M,add(M[q],q=1..m): M:=seq(M[q],q=2..m+1) od: %p A320122 if M[m]=n then true else false fi end: %p A320122 test:=proc(n) local b: %p A320122 for b from 2 to n do if fibo(n, b) then return(true) fi od: %p A320122 return(false) end: %p A320122 L:=NULL:for n from 2 to 1200 do if not(test(n)) then L:=L,n fi od:L; %o A320122 (Python) %o A320122 def digits(n, b): %o A320122 r = [] %o A320122 m = n %o A320122 while m > 0: %o A320122 r = [m % b] + r %o A320122 m = m // b %o A320122 return r %o A320122 def fibo(n, b): %o A320122 L = digits(n, b) %o A320122 m = len(L) - 1 %o A320122 while L[m] < n: %o A320122 L.append(sum(k for k in L)) %o A320122 L.pop(0) %o A320122 return L[m] == n %o A320122 def test(n): %o A320122 for b in range(2, n + 1): %o A320122 if fibo(n, b): %o A320122 return True %o A320122 return False %o A320122 print([n for n in range(2, 2001) if not test(n)]) %o A320122 (PARI) iskb(n, b) = if(n<b, return(0)); my(v=digits(n, b), t=#v); while(v[#v]<n, v=concat(v, sum(i=0, t-1, v[#v-i]))); v[#v]==n; \\ after A007629 %o A320122 isok(n) = if (n<=2, 0, for(b=2, n-1, if (iskb(n, b), return(0))); return (1)); \\ _Michel Marcus_, Oct 08 2018 %Y A320122 Cf. A007629 (Keith numbers in base 10). %K A320122 nonn,base %O A320122 1,1 %A A320122 _Robert FERREOL_, Oct 06 2018 %E A320122 More terms from _Michel Marcus_, Oct 08 2018