This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320123 #11 Oct 13 2018 02:37:17 %S A320123 1,2,3,6,4,9,12,8,15,10,14,5,20,16,25,30,18,27,22,24,11,33,21,7,36,28, %T A320123 35,26,40,13,52,32,39,42,34,17,38,68,19,76,44,55,45,48,46,23,50,92,60, %U A320123 51,56,54,49,63,57,70,66,65,75,69,80,72,78,64,81,84,58 %N A320123 a(1) = 1, a(2) = 2, a(3) = 3, and for any n > 3, a(n) = the smallest positive integer not yet in the sequence such that gcd(a(n-2), a(n-1)), gcd(a(n-1), a(n)) and gcd(a(n), a(n-2)) are all distinct. %C A320123 This sequence is a variant of A127202. %C A320123 The sequence is well defined as for any n > 3, provided the first n terms are known, any number v of the form a(n-2) * b where b is coprime to a(n) * a(n-1) satisfies #{ gcd(a(n-1), a(n)), gcd(a(n), v), gcd(v, a(n-1)) } = #{ gcd(a(n-1), a(n)), gcd(a(n), a(n-2)), gcd(a(n-2), a(n-1)) } = 3, and a(n+1) exists. %C A320123 In the scatterplot of the sequence, the prime numbers correspond to the lower line. %H A320123 Rémy Sigrist, <a href="/A320123/b320123.txt">Table of n, a(n) for n = 1..10000</a> %H A320123 Rémy Sigrist, <a href="/A320123/a320123.gp.txt">PARI program for A320123</a> %e A320123 The first terms, alongside gcd(a(n-2), a(n-1)), gcd(a(n-1), a(n)) and gcd(a(n), a(n-2)), are: %e A320123 n a(n) gcd(a(n-2),a(n-1)) gcd(a(n-1),a(n)) gcd(a(n),a(n-2)) %e A320123 -- ---- ------------------ ---------------- ---------------- %e A320123 1 1 N/A N/A N/A %e A320123 2 2 N/A 1 N/A %e A320123 3 3 1 1 1 %e A320123 4 6 1 3 2 %e A320123 5 4 3 2 1 %e A320123 6 9 2 1 3 %e A320123 7 12 1 3 4 %e A320123 8 8 3 4 1 %e A320123 9 15 4 1 3 %e A320123 10 10 1 5 2 %e A320123 11 14 5 2 1 %e A320123 12 5 2 1 5 %e A320123 13 20 1 5 2 %e A320123 14 16 5 4 1 %e A320123 15 25 4 1 5 %o A320123 (PARI) See Links section. %Y A320123 Cf. A127202. %K A320123 nonn %O A320123 1,2 %A A320123 _Rémy Sigrist_, Oct 06 2018