This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320154 #8 Oct 26 2018 17:11:28 %S A320154 1,2,5,18,92,588,4328,35920,338437,3654751,45105744,625582147, %T A320154 9539374171,157031052142,2757275781918,51293875591794, %U A320154 1007329489077804,20840741773898303,453654220906310222,10380640686263467204,249559854371799622350,6301679967177242849680 %N A320154 Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}. %C A320154 A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. %C A320154 Also the number of balanced phylogenetic rooted trees on n distinct labels. %H A320154 Andrew Howroyd, <a href="/A320154/b320154.txt">Table of n, a(n) for n = 1..200</a> %e A320154 The a(1) = 1 through a(4) = 18 rooted trees: %e A320154 (1) (12) (123) (1234) %e A320154 ((1)(2)) ((1)(23)) ((1)(234)) %e A320154 ((2)(13)) ((12)(34)) %e A320154 ((3)(12)) ((13)(24)) %e A320154 ((1)(2)(3)) ((14)(23)) %e A320154 ((2)(134)) %e A320154 ((3)(124)) %e A320154 ((4)(123)) %e A320154 ((1)(2)(34)) %e A320154 ((1)(3)(24)) %e A320154 ((1)(4)(23)) %e A320154 ((2)(3)(14)) %e A320154 ((2)(4)(13)) %e A320154 ((3)(4)(12)) %e A320154 ((1)(2)(3)(4)) %e A320154 (((1)(2))((3)(4))) %e A320154 (((1)(3))((2)(4))) %e A320154 (((1)(4))((2)(3))) %t A320154 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320154 gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]],{mtn,Select[sps[m],Length[#]>1&]}],m]; %t A320154 Table[Length[Select[gug[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,9}] %o A320154 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320154 b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v} %o A320154 seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ _Andrew Howroyd_, Oct 26 2018 %Y A320154 Cf. A000081, A000311, A000669, A001678, A005804, A048816, A079500, A119262, A120803, A141268, A244925, A292504, A300660, A319312. %Y A320154 Cf. A320155, A320160, A316624, A320169, A320173, A320176, A320179. %K A320154 nonn %O A320154 1,2 %A A320154 _Gus Wiseman_, Oct 06 2018 %E A320154 Terms a(9) and beyond from _Andrew Howroyd_, Oct 26 2018