A320162 Irregular triangle read by rows: row n lists 0 <= k < p^2 such that p^2 divides A172236(k, p-Kronecker(k^2+4, p)), p = prime(n).
0, 0, 4, 5, 0, 7, 18, 0, 12, 20, 24, 25, 29, 37, 0, 5, 18, 19, 24, 43, 78, 97, 102, 103, 116, 0, 2, 14, 45, 70, 82, 87, 99, 124, 155, 167, 0, 24, 38, 40, 63, 83, 103, 105, 184, 186, 206, 226, 249, 251, 265, 0, 31, 37, 63, 79, 100, 137, 144, 150, 180, 181, 211, 217, 224, 261, 282, 298, 324, 330
Offset: 1
Examples
Table starts p = 2: 0, p = 3: 0, 4, 5, p = 5: 0, 7, 18, p = 7: 0, 12, 20, 24, 25, 29, 37, p = 11: 0, 5, 18, 19, 24, 43, 78, 97, 102, 103, 116, p = 13: 0, 2, 14, 45, 70, 82, 87, 99, 124, 155, 167, p = 17: 0, 24, 38, 40, 63, 83, 103, 105, 184, 186, 206, 226, 249, 251, 265, p = 19: 0, 31, 37, 63, 79, 100, 137, 144, 150, 180, 181, 211, 217, 224, 261, 282, 298, 324, 330, p = 23: 0, 21, 30, 38, 40, 70, 79, 89, 111, 149, 198, 248, 281, 331, 380, 418, 440, 450, 459, 489, 491, 499, 508, p = 29: 0, 15, 40, 41, 49, 51, 56, 64, 74, 84, 126, 182, 204, 381, 460, 637, 659, 715, 757, 767, 777, 785, 790, 792, 800, 801, 826, ...
Links
- Jianing Song, Table of n, a(n) for n = 1..29193 (primes below 600)
- Jianing Song, Table of n, a(n) for n = 1..75966 (primes below 1000)
- Wikipedia, Wall-Sun-Sun prime
Crossrefs
Programs
-
PARI
B(k, p) = (([k, 1; 1, 0]^(p-kronecker(k^2+4, p)))[1, 2])%(p^2) forprime(p=2, 50, for(k=0, p^2-1, if(!B(k, p), print1(k, ", "))); print)
Comments