This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320169 #8 Oct 26 2018 00:52:17 %S A320169 1,2,3,6,9,20,31,70,114,243,415,961,1603,3564,6559,14913,26630,60037, %T A320169 110160,248859,458445,1001190,1882350,4220358,7765303,16822107, %U A320169 32307240,70081784,133716083,291788153,561823990,1230204229,2396185727,5176454708,10220127290 %N A320169 Number of balanced enriched p-trees of weight n. %C A320169 An enriched p-tree of weight n is either the number n itself or a finite sequence of enriched p-trees whose weights are weakly decreasing and sum to n. %C A320169 A tree is balanced if all leaves have the same height. %H A320169 Andrew Howroyd, <a href="/A320169/b320169.txt">Table of n, a(n) for n = 1..500</a> %e A320169 The a(1) = 1 through a(6) = 20 balanced enriched p-trees: %e A320169 1 2 3 4 5 6 %e A320169 (11) (21) (22) (32) (33) %e A320169 (111) (31) (41) (42) %e A320169 (211) (221) (51) %e A320169 (1111) (311) (222) %e A320169 ((11)(11)) (2111) (321) %e A320169 (11111) (411) %e A320169 ((21)(11)) (2211) %e A320169 ((111)(11)) (3111) %e A320169 (21111) %e A320169 (111111) %e A320169 ((21)(21)) %e A320169 ((22)(11)) %e A320169 ((31)(11)) %e A320169 ((111)(21)) %e A320169 ((21)(111)) %e A320169 ((211)(11)) %e A320169 ((111)(111)) %e A320169 ((1111)(11)) %e A320169 ((11)(11)(11)) %t A320169 eptrs[n_]:=Prepend[Join@@Table[Tuples[eptrs/@p],{p,Rest[IntegerPartitions[n]]}],n]; %t A320169 Table[Length[Select[eptrs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,12}] %o A320169 (PARI) seq(n)={my(p=x/(1-x) + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p,k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ _Andrew Howroyd_, Oct 26 2018 %Y A320169 Cf. A000311, A000669, A001678, A005804, A048816, A079500, A119262, A120803, A141268, A196545, A289501, A319312. %Y A320169 Cf. A316624, A320154, A320155, A320160, A320179. %K A320169 nonn %O A320169 1,2 %A A320169 _Gus Wiseman_, Oct 07 2018 %E A320169 Terms a(16) and beyond from _Andrew Howroyd_, Oct 26 2018