This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320171 #8 Oct 26 2018 00:52:27 %S A320171 1,2,5,11,29,82,247,782,2579,8702,29975,104818,371111,1327307,4788687, %T A320171 17404838,63669763,234237605,866090021,3216738344,11995470691, %U A320171 44894977263,168582174353,634939697164,2398004674911,9079614633247,34458722286825,131059771522401 %N A320171 Number of series-reduced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n. %C A320171 A rooted tree is series-reduced if every non-leaf node has at least two branches. %C A320171 In an identity tree, all branches directly under any given node are different. %H A320171 Andrew Howroyd, <a href="/A320171/b320171.txt">Table of n, a(n) for n = 1..200</a> %e A320171 The a(1) = 1 through a(4) = 11 rooted identity trees: %e A320171 (1) (2) (3) (4) %e A320171 (11) (21) (22) %e A320171 (111) (31) %e A320171 ((1)(2)) (211) %e A320171 ((1)(11)) (1111) %e A320171 ((1)(3)) %e A320171 ((1)(21)) %e A320171 ((2)(11)) %e A320171 ((1)(111)) %e A320171 ((1)((1)(2))) %e A320171 ((1)((1)(11))) %t A320171 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320171 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320171 gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m]; %t A320171 Table[Sum[Length[gig[y]],{y,IntegerPartitions[n]}],{n,8}] %o A320171 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A320171 seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numbpart(n) + WeighT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320171 Cf. A000081, A000311, A000669, A001678, A005804, A141268, A292504, A300660, A319312, A320172, A320177, A320178. %K A320171 nonn %O A320171 1,2 %A A320171 _Gus Wiseman_, Oct 07 2018 %E A320171 Terms a(12) and beyond from _Andrew Howroyd_, Oct 25 2018