This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320173 #8 Dec 14 2020 14:18:33 %S A320173 1,2,3,12,23,84,204,830,2940,13397,58794,283132,1377302,7087164, %T A320173 37654377,209943842,1226495407,7579549767,49541194089,341964495985, %U A320173 2476907459261,18703210872343,146284738788714,1179199861398539,9760466433602510,82758834102114911,717807201648148643 %N A320173 Number of inequivalent colorings of series-reduced balanced rooted trees with n leaves. %C A320173 A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. %e A320173 Inequivalent representatives of the a(1) = 1 through a(5) = 23 colorings: %e A320173 1 (11) (111) (1111) (11111) %e A320173 (12) (112) (1112) (11112) %e A320173 (123) (1122) (11122) %e A320173 (1123) (11123) %e A320173 (1234) (11223) %e A320173 ((11)(11)) (11234) %e A320173 ((11)(12)) (12345) %e A320173 ((11)(22)) ((11)(111)) %e A320173 ((11)(23)) ((11)(112)) %e A320173 ((12)(12)) ((11)(122)) %e A320173 ((12)(13)) ((11)(123)) %e A320173 ((12)(34)) ((11)(223)) %e A320173 ((11)(234)) %e A320173 ((12)(111)) %e A320173 ((12)(112)) %e A320173 ((12)(113)) %e A320173 ((12)(123)) %e A320173 ((12)(134)) %e A320173 ((12)(345)) %e A320173 ((13)(122)) %e A320173 ((22)(111)) %e A320173 ((23)(111)) %e A320173 ((23)(114)) %o A320173 (PARI) \\ See links in A339645 for combinatorial species functions. %o A320173 cycleIndexSeries(n)={my(p=x*sv(1) + O(x*x^n), q=0); while(p, q+=p; p=sEulerT(p)-1-p); q} %o A320173 InequivalentColoringsSeq(cycleIndexSeries(15)) \\ _Andrew Howroyd_, Dec 11 2020 %Y A320173 Cf. A000669, A005804, A048816, A079500, A119262, A120803, A141268, A244925, A319312. %Y A320173 Cf. A320154, A320155, A320160, A320174, A320175, A320179, A339645. %K A320173 nonn %O A320173 1,2 %A A320173 _Gus Wiseman_, Oct 07 2018 %E A320173 Terms a(8) and beyond from _Andrew Howroyd_, Dec 11 2020