This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320176 #8 Oct 26 2018 17:09:51 %S A320176 1,1,3,3,5,13,15,23,33,99,109,183,251,383,1071,1261,2007,2875,4291, %T A320176 5829,16297,18563,30313,42243,63707,85351,125465,297843,356657,556729, %U A320176 783637,1151803,1564173,2249885,2988729,6803577,8026109,12465665,17124495,25272841,33657209 %N A320176 Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is a strict integer partition of n. %C A320176 Also the number of orderless tree-factorizations of Heinz numbers of strict integer partitions of n. %C A320176 Also the number of phylogenetic trees on a set of distinct labels summing to n. %H A320176 Andrew Howroyd, <a href="/A320176/b320176.txt">Table of n, a(n) for n = 1..1000</a> %F A320176 a(n) = Sum_{k>0} A008289(n, k)*A005804(k). - _Andrew Howroyd_, Oct 26 2018 %e A320176 The a(1) = 1 through a(7) = 15 rooted trees: %e A320176 (1) (2) (3) (4) (5) (6) (7) %e A320176 (21) (31) (32) (42) (43) %e A320176 ((1)(2)) ((1)(3)) (41) (51) (52) %e A320176 ((1)(4)) (321) (61) %e A320176 ((2)(3)) ((1)(5)) (421) %e A320176 ((2)(4)) ((1)(6)) %e A320176 ((1)(23)) ((2)(5)) %e A320176 ((2)(13)) ((3)(4)) %e A320176 ((3)(12)) ((1)(24)) %e A320176 ((1)(2)(3)) ((2)(14)) %e A320176 ((1)((2)(3))) ((4)(12)) %e A320176 ((2)((1)(3))) ((1)(2)(4)) %e A320176 ((3)((1)(2))) ((1)((2)(4))) %e A320176 ((2)((1)(4))) %e A320176 ((4)((1)(2))) %t A320176 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320176 got[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[got/@p]],{p,Select[sps[m],Length[#]>1&]}],m]; %t A320176 Table[Length[Join@@Table[got[m],{m,Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,20}] %o A320176 (PARI) \\ here S(n) is first n terms of A005804. %o A320176 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320176 b(n,k)={my(v=vector(n)); for(n=1, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v} %o A320176 S(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} %o A320176 seq(n)={my(u=S((sqrtint(8*n+1)-1)\2)); [sum(i=1, poldegree(p), polcoef(p,i)*u[i]) | p <- Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))-1)]} \\ _Andrew Howroyd_, Oct 26 2018 %Y A320176 Cf. A000669, A005804, A008289, A141268, A292504, A300660, A319312, A320171, A320174, A320175, A320177, A320178. %K A320176 nonn %O A320176 1,3 %A A320176 _Gus Wiseman_, Oct 07 2018 %E A320176 Terms a(31) and beyond from _Andrew Howroyd_, Oct 26 2018