cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320177 Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.

This page as a plain text file.
%I A320177 #10 Oct 25 2018 22:20:44
%S A320177 1,1,3,5,11,26,65,169,463,1294,3691,10700,31417,93175,278805,840424,
%T A320177 2549895,7780472,23860359,73500838,227330605,705669634,2197750615,
%U A320177 6865335389,21505105039,67533738479,212575923471,670572120240,2119568530289,6712115439347
%N A320177 Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.
%C A320177 A rooted tree is series-reduced if every non-leaf node has at least two branches.
%C A320177 In an identity tree, all branches directly under any given node are different.
%H A320177 Andrew Howroyd, <a href="/A320177/b320177.txt">Table of n, a(n) for n = 1..200</a>
%e A320177 The a(1) = 1 through a(5) = 11 rooted trees:
%e A320177   (1)  (2)  (3)       (4)            (5)
%e A320177             (21)      (31)           (32)
%e A320177             ((1)(2))  ((1)(3))       (41)
%e A320177                       ((1)(12))      ((1)(4))
%e A320177                       ((1)((1)(2)))  ((2)(3))
%e A320177                                      ((1)(13))
%e A320177                                      ((2)(12))
%e A320177                                      ((1)((1)(3)))
%e A320177                                      ((2)((1)(2)))
%e A320177                                      ((1)((1)(12)))
%e A320177                                      ((1)((1)((1)(2))))
%t A320177 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A320177 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A320177 gog[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gog/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]];
%t A320177 Table[Length[Join@@Table[gog[m],{m,IntegerPartitions[n]}]],{n,10}]
%o A320177 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A320177 seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + WeighT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018
%Y A320177 Cf. A000669, A004111, A005804, A141268, A292504, A300660, A319312.
%Y A320177 Cf. A320171, A320174, A320175, A320176, A320178.
%K A320177 nonn
%O A320177 1,3
%A A320177 _Gus Wiseman_, Oct 07 2018
%E A320177 Terms a(13) and beyond from _Andrew Howroyd_, Oct 25 2018