This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320177 #10 Oct 25 2018 22:20:44 %S A320177 1,1,3,5,11,26,65,169,463,1294,3691,10700,31417,93175,278805,840424, %T A320177 2549895,7780472,23860359,73500838,227330605,705669634,2197750615, %U A320177 6865335389,21505105039,67533738479,212575923471,670572120240,2119568530289,6712115439347 %N A320177 Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n. %C A320177 A rooted tree is series-reduced if every non-leaf node has at least two branches. %C A320177 In an identity tree, all branches directly under any given node are different. %H A320177 Andrew Howroyd, <a href="/A320177/b320177.txt">Table of n, a(n) for n = 1..200</a> %e A320177 The a(1) = 1 through a(5) = 11 rooted trees: %e A320177 (1) (2) (3) (4) (5) %e A320177 (21) (31) (32) %e A320177 ((1)(2)) ((1)(3)) (41) %e A320177 ((1)(12)) ((1)(4)) %e A320177 ((1)((1)(2))) ((2)(3)) %e A320177 ((1)(13)) %e A320177 ((2)(12)) %e A320177 ((1)((1)(3))) %e A320177 ((2)((1)(2))) %e A320177 ((1)((1)(12))) %e A320177 ((1)((1)((1)(2)))) %t A320177 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320177 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320177 gog[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gog/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]]; %t A320177 Table[Length[Join@@Table[gog[m],{m,IntegerPartitions[n]}]],{n,10}] %o A320177 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A320177 seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + WeighT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320177 Cf. A000669, A004111, A005804, A141268, A292504, A300660, A319312. %Y A320177 Cf. A320171, A320174, A320175, A320176, A320178. %K A320177 nonn %O A320177 1,3 %A A320177 _Gus Wiseman_, Oct 07 2018 %E A320177 Terms a(13) and beyond from _Andrew Howroyd_, Oct 25 2018