This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320178 #9 Oct 25 2018 22:21:00 %S A320178 1,2,4,8,19,53,151,459,1445,4634,15154,50253,168607,571212,1951588, %T A320178 6715575,23255444,80978697,283373024,995995996,3514614634,12446666967, %U A320178 44222390525,157587392768,563096832839,2017121728223,7242436444030,26059512879605,93952946906117 %N A320178 Number of series-reduced rooted identity trees whose leaves are constant integer partitions whose multiset union is an integer partition of n. %C A320178 A rooted tree is series-reduced if every non-leaf node has at least two branches. %C A320178 In an identity tree, all branches directly under any given node are different. %H A320178 Andrew Howroyd, <a href="/A320178/b320178.txt">Table of n, a(n) for n = 1..200</a> %e A320178 The a(1) = 1 through a(5) = 19 rooted trees: %e A320178 (1) (2) (3) (4) (5) %e A320178 (11) (111) (22) (11111) %e A320178 ((1)(2)) (1111) ((1)(4)) %e A320178 ((1)(11)) ((1)(3)) ((2)(3)) %e A320178 ((2)(11)) ((1)(22)) %e A320178 ((1)(111)) ((3)(11)) %e A320178 ((1)((1)(2))) ((2)(111)) %e A320178 ((1)((1)(11))) ((1)(1111)) %e A320178 ((11)(111)) %e A320178 ((1)(2)(11)) %e A320178 ((1)((1)(3))) %e A320178 ((2)((1)(2))) %e A320178 ((11)((1)(2))) %e A320178 ((1)((2)(11))) %e A320178 ((2)((1)(11))) %e A320178 ((1)((1)(111))) %e A320178 ((11)((1)(11))) %e A320178 ((1)((1)((1)(2)))) %e A320178 ((1)((1)((1)(11)))) %t A320178 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320178 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320178 gob[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gob/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]]; %t A320178 Table[Length[Join@@Table[gob[m],{m,IntegerPartitions[n]}]],{n,10}] %o A320178 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A320178 seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + WeighT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320178 Cf. A000669, A004111, A005804, A141268, A292504, A300660, A319312. %Y A320178 Cf. A320171, A320174, A320175, A320176, A320177. %K A320178 nonn %O A320178 1,2 %A A320178 _Gus Wiseman_, Oct 07 2018 %E A320178 Terms a(13) and beyond from _Andrew Howroyd_, Oct 25 2018