This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320221 #16 Dec 09 2020 15:55:06 %S A320221 1,1,1,1,1,1,1,1,3,1,3,1,6,1,1,7,1,1,11,4,1,13,6,1,20,16,1,23,23,1,33, %T A320221 46,1,40,70,1,54,127,1,1,65,189,1,1,87,320,5,1,104,476,10,1,136,771, %U A320221 32,1,164,1145,63,1,209,1795,154,1,252,2657,304,1,319,4091,656 %N A320221 Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)). %H A320221 Andrew Howroyd, <a href="/A320221/b320221.txt">Table of n, a(n) for n = 1..1154</a> (rows 1..200) %e A320221 Triangle begins: %e A320221 1 %e A320221 1 %e A320221 1 %e A320221 1 1 %e A320221 1 1 %e A320221 1 3 %e A320221 1 3 %e A320221 1 6 1 %e A320221 1 7 1 %e A320221 1 11 4 %e A320221 1 13 6 %e A320221 1 20 16 %e A320221 1 23 23 %e A320221 1 33 46 %e A320221 1 40 70 %e A320221 The T(11,3) = 6 rooted trees: %e A320221 (((oo)(oo))((oo)(ooooo))) %e A320221 (((oo)(oo))((ooo)(oooo))) %e A320221 (((oo)(ooo))((oo)(oooo))) %e A320221 (((oo)(ooo))((ooo)(ooo))) %e A320221 (((oo)(oo))((oo)(oo)(ooo))) %e A320221 (((oo)(ooo))((oo)(oo)(oo))) %t A320221 qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]]; %t A320221 DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}] %o A320221 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A320221 T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]} %o A320221 { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Dec 09 2020 %Y A320221 Row sums are A120803. Second column is A083751. A regular version is A320179. %Y A320221 Cf. A000669, A005804, A048816, A119262, A120803, A141268, A244925, A319312. %Y A320221 Cf. A316624, A320154, A320155, A320160, A320172, A320173. %K A320221 nonn,tabf %O A320221 1,9 %A A320221 _Gus Wiseman_, Oct 07 2018 %E A320221 Terms a(36) and beyond from _Andrew Howroyd_, Dec 09 2020 %E A320221 Name clarified by _Andrew Howroyd_, Dec 09 2020