This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320222 #15 Jan 22 2023 18:54:08 %S A320222 1,1,2,4,9,18,39,78,161,324,658,1316,2657,5314,10668,21347,42777, %T A320222 85554,171290,342580,685498,1371037,2742733,5485466,10972351,21944711, %U A320222 43892080,87784323,175574004,351148008,702307038,1404614076,2809249582,5618499824,11237042426 %N A320222 Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal. %C A320222 This is a weaker condition than achirality (cf. A003238). %H A320222 Andrew Howroyd, <a href="/A320222/b320222.txt">Table of n, a(n) for n = 1..500</a> %F A320222 a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k). %F A320222 a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - _Vaclav Kotesovec_, Sep 07 2019 %e A320222 The a(1) = 1 through a(6) = 18 rooted trees: %e A320222 o (o) (oo) (ooo) (oooo) (ooooo) %e A320222 ((o)) ((oo)) ((ooo)) ((oooo)) %e A320222 (o(o)) (o(oo)) (o(ooo)) %e A320222 (((o))) (oo(o)) (oo(oo)) %e A320222 (((oo))) (ooo(o)) %e A320222 ((o)(o)) (((ooo))) %e A320222 ((o(o))) ((o(oo))) %e A320222 (o((o))) ((oo(o))) %e A320222 ((((o)))) (o((oo))) %e A320222 (o(o)(o)) %e A320222 (o(o(o))) %e A320222 (oo((o))) %e A320222 ((((oo)))) %e A320222 (((o)(o))) %e A320222 (((o(o)))) %e A320222 ((o((o)))) %e A320222 (o(((o)))) %e A320222 (((((o))))) %t A320222 saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn,1],If[DeleteCases[ptn,1]=={},1,saue[DeleteCases[ptn,1][[1]]]],0],{ptn,IntegerPartitions[n-1]}]; %t A320222 Table[saue[n],{n,15}] %o A320222 (PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ _Andrew Howroyd_, Oct 26 2018 %Y A320222 Cf. A002541, A003238, A010766, A126656, A014668, A167865, A214577, A316782, A317099, A317100, A317712, A320230. %K A320222 nonn %O A320222 1,3 %A A320222 _Gus Wiseman_, Oct 07 2018