A320226 Number of integer partitions of n whose non-1 parts are all equal.
1, 1, 2, 3, 5, 6, 9, 10, 13, 15, 18, 19, 24, 25, 28, 31, 35, 36, 41, 42, 47, 50, 53, 54, 61, 63, 66, 69, 74, 75, 82, 83, 88, 91, 94, 97, 105, 106, 109, 112, 119, 120, 127, 128, 133, 138, 141, 142, 151, 153, 158, 161, 166, 167, 174, 177, 184, 187, 190, 191, 202
Offset: 0
Keywords
Examples
The integer partitions whose non-1 parts are all equal: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (41) (33) (61) (44) (111) (31) (221) (51) (331) (71) (211) (311) (222) (511) (611) (1111) (2111) (411) (2221) (2222) (11111) (2211) (4111) (3311) (3111) (22111) (5111) (21111) (31111) (22211) (111111) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111)
Links
- Jonathan Bloom, Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],SameQ@@DeleteCases[#,1]&]],{n,30}]
Formula
a(n > 1) = A002541(n - 1) + 1.