cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320231 Expansion of Product_{k=1..5} theta_3(q^k), where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A320231 #12 Feb 16 2025 08:33:56
%S A320231 1,2,2,6,8,10,20,20,26,38,40,48,54,60,56,80,76,60,106,76,102,132,100,
%T A320231 128,160,174,136,210,164,164,280,160,182,256,216,232,320,204,244,408,
%U A320231 288,288,368,316,292,518,276,264,510,310,454,480,380,408,616,524,428,656
%N A320231 Expansion of Product_{k=1..5} theta_3(q^k), where theta_3() is the Jacobi theta function.
%C A320231 Also the number of integer solutions (a_1, a_2, ... , a_5) to the equation a_1^2 + 2*a_2^2 + ... + 5*a_5^2 = n.
%H A320231 Seiichi Manyama, <a href="/A320231/b320231.txt">Table of n, a(n) for n = 0..10000</a>
%H A320231 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%Y A320231 Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), this sequence (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8).
%Y A320231 Cf. A320067.
%K A320231 nonn
%O A320231 0,2
%A A320231 _Seiichi Manyama_, Oct 08 2018