cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320232 Expansion of Product_{k=1..6} theta_3(q^k), where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A320232 #12 Feb 16 2025 08:33:56
%S A320232 1,2,2,6,8,10,22,24,30,50,56,68,94,100,108,156,156,156,214,196,214,
%T A320232 292,252,248,374,330,344,486,380,440,640,548,506,752,624,656,988,644,
%U A320232 720,1080,872,872,1220,876,984,1598,1052,1096,1566,1290,1310,1936,1260,1264,2198
%N A320232 Expansion of Product_{k=1..6} theta_3(q^k), where theta_3() is the Jacobi theta function.
%C A320232 Also the number of integer solutions (a_1, a_2, ... , a_6) to the equation a_1^2 + 2*a_2^2 + ... + 6*a_6^2 = n.
%H A320232 Seiichi Manyama, <a href="/A320232/b320232.txt">Table of n, a(n) for n = 0..10000</a>
%H A320232 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%Y A320232 Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), this sequence (m=6), A320233 (m=7), A320234 (m=8).
%Y A320232 Cf. A320067.
%K A320232 nonn
%O A320232 0,2
%A A320232 _Seiichi Manyama_, Oct 08 2018