cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320233 Expansion of Product_{k=1..7} theta_3(q^k), where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A320233 #14 Feb 16 2025 08:33:56
%S A320233 1,2,2,6,8,10,22,26,34,54,68,84,114,144,156,216,256,268,350,384,414,
%T A320233 508,564,560,686,758,736,914,966,948,1140,1308,1182,1460,1640,1464,
%U A320233 1928,2024,1928,2228,2564,2320,2748,3164,2584,3350,3640,3232,3738,4314,3566,4400
%N A320233 Expansion of Product_{k=1..7} theta_3(q^k), where theta_3() is the Jacobi theta function.
%C A320233 Also the number of integer solutions (a_1, a_2, ... , a_7) to the equation a_1^2 + 2*a_2^2 + ... + 7*a_7^2 = n.
%H A320233 Seiichi Manyama, <a href="/A320233/b320233.txt">Table of n, a(n) for n = 0..10000</a>
%H A320233 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%Y A320233 Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), this sequence (m=7), A320234 (m=8).
%Y A320233 Cf. A320067.
%K A320233 nonn,look
%O A320233 0,2
%A A320233 _Seiichi Manyama_, Oct 08 2018