cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320238 G.f.: Product_{k>=1, j>=1} (1 + x^(k*j)) / (1 - x^(k*j))^2.

This page as a plain text file.
%I A320238 #7 Oct 08 2018 10:19:26
%S A320238 1,3,11,31,85,209,504,1138,2514,5339,11098,22432,44535,86523,165496,
%T A320238 311187,577190,1055524,1907423,3405574,6016826,10520065,18222215,
%U A320238 31275320,53230224,89860112,150551503,250388180,413572707,678574627,1106396434,1793009335
%N A320238 G.f.: Product_{k>=1, j>=1} (1 + x^(k*j)) / (1 - x^(k*j))^2.
%C A320238 Convolution of A107742 and A320236.
%H A320238 Vaclav Kotesovec, <a href="/A320238/b320238.txt">Table of n, a(n) for n = 0..10000</a>
%F A320238 Conjecture: log(a(n)) ~ Pi * sqrt(5*n*log(n)/6).
%t A320238 nmax = 50; CoefficientList[Series[Product[(1+x^(k*j))/(1-x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]
%Y A320238 Cf. A158441, A107742, A320236.
%K A320238 nonn
%O A320238 0,2
%A A320238 _Vaclav Kotesovec_, Oct 08 2018