cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320242 Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A320242 #12 Feb 16 2025 08:33:56
%S A320242 1,2,2,6,8,10,22,26,36,60,78,104,146,192,236,332,420,500,674,816,986,
%T A320242 1256,1488,1752,2174,2566,2940,3550,4102,4640,5528,6292,6948,8160,
%U A320242 9172,10060,11618,12840,13980,15940,17590,18844,21252,23308,24772,27926,30360,31932
%N A320242 Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.
%C A320242 Also the number of integer solutions (a_1, a_2, ... , a_10) to the equation a_1^2 + 2*a_2^2 + ... + 10*a_10^2 = n.
%H A320242 Seiichi Manyama, <a href="/A320242/b320242.txt">Table of n, a(n) for n = 0..10000</a>
%H A320242 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%Y A320242 Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), this sequence (m=10).
%Y A320242 Cf. A320067.
%K A320242 nonn
%O A320242 0,2
%A A320242 _Seiichi Manyama_, Oct 08 2018