This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320252 #11 Jan 03 2021 15:11:25 %S A320252 1,12,40,112,352,540,600,675,832,2176,2268,2352,3969,4864,10692,11616, %T A320252 11776,27440,29403,29696,32448,35000,37908,63488,75600,105840,110976, %U A320252 113400,123201,148716,151552,158760,212960,214375,237600,275000,277248,335872,411600 %N A320252 Numbers with prime factorization Product_{k=1..w} prime(i_k) ^ e_k (where w = A001221(n) and prime(i) denotes the i-th prime number) such that i_k <> e_k for k = 1..w and { i_1, ..., i_w } = { e_1, ..., e_w }. %C A320252 This sequence is a subsequence of A109297. %C A320252 For any i > 0 and j > 0 such that a(i) and a(j) are coprime, a(i) * a(j) belongs to this sequence. %C A320252 For any i > 0, A048767(a(i)) belongs to this sequence. %C A320252 Let S be the set of permutations of the natural numbers with finitely many non-fixed points: %C A320252 - we can build a bijection f from S to this sequence as follows: for any s in S, f(s) = Product_{s(i) <> i} prime(i) ^ s(i), %C A320252 - for any s in S with inverse z, f(z) = A048767(f(s)). %F A320252 A001221(a(n)) = A071625(a(n)). %e A320252 The first terms, alongside the corresponding permutations, are: %e A320252 n a(n) s %e A320252 -- ------ ---------- %e A320252 1 1 () %e A320252 2 12 (1 2) %e A320252 3 40 (1 3) %e A320252 4 112 (1 4) %e A320252 5 352 (1 5) %e A320252 6 540 (1 2 3) %e A320252 7 600 (1 3 2) %e A320252 8 675 (2 3) %e A320252 9 832 (1 6) %e A320252 10 2176 (1 7) %e A320252 11 2268 (1 2 4) %e A320252 12 2352 (1 4 2) %e A320252 13 3969 (2 4) %e A320252 14 4864 (1 8) %e A320252 15 10692 (1 2 5) %e A320252 16 11616 (1 5 2) %e A320252 17 11776 (1 9) %e A320252 18 27440 (1 4 3) %e A320252 19 29403 (2 5) %e A320252 20 29696 (1 10) %e A320252 21 32448 (1 6 2) %e A320252 22 35000 (1 3 4) %e A320252 23 37908 (1 2 6) %e A320252 24 63488 (1 11) %e A320252 25 75600 (1 4)(2 3) %o A320252 (PARI) is(n) = my (f=factor(n), i=apply(primepi, f[,1]~), e=f[,2]~); #select(k -> i[k]==e[k], [1..#f~])==0 && Set(i) == Set(e) %Y A320252 Cf. A001221, A048767, A071625, A109297. %K A320252 nonn %O A320252 1,2 %A A320252 _Rémy Sigrist_, Oct 08 2018