A320260 Number of ordered pairs (j,k) with 0 < j < k < prime(n)/2 such that (j*(j+1) mod prime(n)) > (k*(k+1) mod prime(n)).
0, 0, 1, 1, 3, 8, 13, 10, 19, 41, 44, 70, 83, 75, 100, 143, 167, 210, 188, 225, 290, 306, 322, 401, 503, 554, 481, 541, 634, 686, 848, 858, 1048, 981, 1203, 1099, 1468, 1332, 1421, 1700, 1646, 1831, 2054, 2077, 2135, 2017, 2356, 2698, 2712, 2851, 3022, 3112, 3386, 3447, 3838, 3551, 4062, 3956, 4466, 4569
Offset: 1
Keywords
Examples
a(4) = 1 since prime(4) = 7 and (1*2 mod 7, 2*3 mod 7, 3*4 mod 7) = (1,6,5) with 6 > 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
- Zhi-Wei Sun, Quadratic residues and related permutations and identities, arXiv:1809.07766 [math.NT], 2018.
Programs
-
Mathematica
T[p_]:=T[p]=Sum[Boole[Mod[j(j+1),p]>Mod[k(k+1),p]],{k,2,(p-1)/2},{j,1,k-1}];Table[T[Prime[n]],{n,1,60}]
Comments