This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320270 #6 Oct 09 2018 15:12:45 %S A320270 1,1,2,2,3,4,6,7,10,13,19,25,35,46,65,88,124,171,242,334,470,653,921, %T A320270 1287,1822,2565,3640,5144,7311,10360,14734,20918,29781,42361,60389, %U A320270 86069,122893,175479,250922,358863 %N A320270 Number of unlabeled balanced semi-binary rooted trees with n nodes. %C A320270 An unlabeled rooted tree is semi-binary if all out-degrees are <= 2, and balanced if all leaves are the same distance from the root. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190. %H A320270 Gus Wiseman, <a href="/A320270/a320270.png">The a(13) = 35 balanced semi-binary rooted trees.</a> %H A320270 Gus Wiseman, <a href="/A320270/a320270_1.png">The a(15) = 65 balanced semi-binary rooted trees.</a> %H A320270 Gus Wiseman, <a href="/A320270/a320270_2.png">The a(16) = 88 balanced semi-binary rooted trees.</a> %H A320270 Gus Wiseman, <a href="/A320270/a320270_3.png">The a(18) = 171 balanced semi-binary rooted trees.</a> %e A320270 The a(1) = 1 through a(7) = 6 balanced semi-binary rooted trees: %e A320270 o (o) (oo) ((oo)) (((oo))) ((o)(oo)) ((oo)(oo)) %e A320270 ((o)) (((o))) ((o)(o)) ((((oo)))) (((o)(oo))) %e A320270 ((((o)))) (((o)(o))) (((((oo))))) %e A320270 (((((o))))) ((((o)(o)))) %e A320270 (((o))((o))) %e A320270 ((((((o)))))) %t A320270 saur[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[saur/@ptn]],SameQ@@Length/@Position[#,{}]&],{ptn,Select[IntegerPartitions[n-1],Length[#]<=2&]}]]; %t A320270 Table[Length[saur[n]],{n,20}] %Y A320270 Cf. A001190, A048816, A079500, A111299, A292050, A298204, A301345, A320271. %K A320270 nonn %O A320270 1,3 %A A320270 _Gus Wiseman_, Oct 08 2018