A320271 Number of unlabeled semi-binary rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.
1, 1, 2, 3, 6, 9, 17, 26, 46, 72, 124, 196, 329, 525, 871, 1396, 2293, 3689, 6028, 9717, 15817, 25534, 41475, 67009, 108680, 175689, 284698, 460387, 745610, 1205997, 1952478, 3158475, 5112349, 8270824, 13385466, 21656290, 35045445, 56701735, 91753208
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 17 semi-binary rooted trees: o (o) (oo) ((oo)) (o(oo)) ((o(oo))) ((oo)(oo)) ((o)) (o(o)) (((oo))) (o((oo))) (o(o(oo))) (((o))) ((o)(o)) (o(o(o))) (((o(oo)))) ((o(o))) ((((oo)))) ((o((oo)))) (o((o))) (((o)(o))) ((o(o(o)))) ((((o)))) (((o(o)))) (o(((oo)))) ((o((o)))) (o((o)(o))) (o(((o)))) (o((o(o)))) (((((o))))) (o(o((o)))) (((((oo))))) ((((o)(o)))) ((((o(o))))) (((o))((o))) (((o((o))))) ((o(((o))))) (o((((o))))) ((((((o))))))
Crossrefs
Programs
-
Mathematica
crb[n_]:=Switch[n,1,1,2,1,3,2,?EvenQ,crb[n-1]+crb[n-2],?OddQ,crb[n-1]+crb[n-2]+crb[(n-1)/2]] Array[crb,20]
Formula
a(1) = 1,
a(2) = 1,
a(3) = 2,
a(n even) = a(n-1) + a(n-2),
a(n odd) = a(n-1) + a(n-2) + a((n-1)/2).
Comments