cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320275 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.

This page as a plain text file.
%I A320275 #19 Dec 20 2018 22:44:52
%S A320275 2,3,7,9,13,19,27,37,49,53,61,81,89,91,113,131,151,169,223,243,247,
%T A320275 251,281,299,311,343,359,361,377,427,463,503,593,611,637,659,689,703,
%U A320275 719,729,791,827,851,863,923,953,1069,1073,1159,1163,1183,1291,1321,1339
%N A320275 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
%C A320275 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of not necessarily strict connected antichains of multisets spanning an initial interval of positive integers.
%e A320275 The sequence of multisystems whose MM-numbers belong to the sequence begins:
%e A320275     2: {{}}
%e A320275     3: {{1}}
%e A320275     7: {{1,1}}
%e A320275     9: {{1},{1}}
%e A320275    13: {{1,2}}
%e A320275    19: {{1,1,1}}
%e A320275    27: {{1},{1},{1}}
%e A320275    37: {{1,1,2}}
%e A320275    49: {{1,1},{1,1}}
%e A320275    53: {{1,1,1,1}}
%e A320275    61: {{1,2,2}}
%e A320275    81: {{1},{1},{1},{1}}
%e A320275    89: {{1,1,1,2}}
%e A320275    91: {{1,1},{1,2}}
%e A320275   113: {{1,2,3}}
%e A320275   131: {{1,1,1,1,1}}
%e A320275   151: {{1,1,2,2}}
%e A320275   169: {{1,2},{1,2}}
%t A320275 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A320275 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
%t A320275 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A320275 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A320275 Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
%Y A320275 Cf. A003963, A006126, A055932, A056239, A112798, A285572, A286520, A290103, A293994, A302242, A316476, A319496, A319837, A320456, A320532.
%K A320275 nonn
%O A320275 1,1
%A A320275 _Gus Wiseman_, Dec 16 2018