This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320281 #21 Nov 13 2023 04:52:21 %S A320281 0,1,7,18,35,57,84,117,155,198,247,301,360,425,495,570,651,737,828, %T A320281 925,1027,1134,1247,1365,1488,1617,1751,1890,2035,2185,2340,2501,2667, %U A320281 2838,3015,3197,3384,3577,3775,3978 %N A320281 Terms that are on the positive x-axis of the square spiral built with 2*k, 2*k+1, 2*k+1 for k >= 0. %C A320281 Resulting spiral: %C A320281 28--29--29--30--31--31--32 %C A320281 | %C A320281 27 13--14--15--15--16--17 %C A320281 | | | %C A320281 27 13 4---5---5---6 17 %C A320281 | | | | | %C A320281 26 12 3 0---1 7 18 %C A320281 | | | | | | %C A320281 25 11 3---2---1 7 19 %C A320281 | | | | %C A320281 25 11--10---9---9---8 19 %C A320281 | | %C A320281 24--23--23--22--21--21--20 %C A320281 . %C A320281 a(n) mod 9 is of period 27. a(n) mod 10 is of period 30. %C A320281 The NE diagonal starting at 1 is A301696. - _Klaus Purath_, May 15 2021 %H A320281 Colin Barker, <a href="/A320281/b320281.txt">Table of n, a(n) for n = 0..1000</a> %H A320281 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1). %F A320281 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), a(0)=0, a(1)=1, a(2)=7, a(3)=18, a(4)=35. %F A320281 a(n+2) - 2*a(n-1) + a(n) = period 3: repeat [5, 5, 6]. %F A320281 a(-n) = 0, 5, 15, 30, 51, 77, 108, 145, ... is the sequence of the terms on the positive y-axis. %F A320281 G.f.: x*(1 + 5*x + 5*x^2 + 5*x^3) / ((1 - x)^3*(1 + x + x^2)). - _Colin Barker_, Oct 09 2018 %t A320281 LinearRecurrence[{2,-1,1,-2,1},{0,1,7,18,35},100] (* _Paolo Xausa_, Nov 13 2023 *) %o A320281 (PARI) concat(0, Vec(x*(1 + 5*x + 5*x^2 + 5*x^3) / ((1 - x)^3*(1 + x + x^2)) + O(x^50))) \\ _Colin Barker_, Oct 09 2018 %Y A320281 Cf. A000969. %K A320281 nonn,easy %O A320281 0,3 %A A320281 _Paul Curtz_, Oct 09 2018