This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320282 #22 Sep 08 2022 08:46:23 %S A320282 13,95,5275,40565,2528305,20376755,1364211535,788845655845, %T A320282 6641614785575,4056609907500605,296528399013300025, %U A320282 2544627551941066235,188573149984760785495,121907205372133465501165,79832689778949397606269355,694937020886283311634222725,461241110187445155009340352195 %N A320282 a(n) = (3^(prime(n)-1) - 2^(prime(n)-1))/prime(n). %C A320282 Fermat quotients in base 3/2. %C A320282 For n > 3, a(n) is divisible by 5. %C A320282 Primes p such that p^2 divides 3^(p-1) - 2^(p-1) (base-3/2 Wieferich primes) are p = 23, ... What's the next? %H A320282 G. C. Greubel, <a href="/A320282/b320282.txt">Table of n, a(n) for n = 3..317</a> %e A320282 For n = 3, prime(3) = 5 and a(3) = (3^4 - 2^4)/5 = 13. %e A320282 For n = 4, prime(4) = 7 and a(4) = (3^6 - 2^6)/7 = 95. %t A320282 p[n_]:=Prime[n]; a[n_]:=(3^(p[n]-1) - 2^(p[n]-1))/p[n]; Array[a, 50, 3] (* _Stefano Spezia_, Oct 11 2018 *) %o A320282 (PARI) a(n) = my(p=prime(n)); (3^(p-1) - 2^(p-1))/p %o A320282 (Magma) [(3^(p-1) - 2^(p-1)) div p: p in PrimesInInterval(4, 100)]; // _Vincenzo Librandi_, Oct 12 2018 %Y A320282 Cf. A073631 (base-3/2 Fermat pseudoprimes). %K A320282 nonn %O A320282 3,1 %A A320282 _Jianing Song_, Oct 09 2018