This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320291 #9 Oct 26 2018 00:52:42 %S A320291 1,0,0,0,1,1,3,3,7,8,15,19,36,46,79,110,181,254,407,580,907,1309,2004, %T A320291 2909,4410,6407,9599,13984,20782,30252,44677,64967,95414,138563, %U A320291 202527,293583,427442,618337,897023,1295020,1872696,2697777,3889964,5591917,8041593,11535890 %N A320291 Number of singleton-free multiset partitions of integer partitions of n with no 1's. %H A320291 Andrew Howroyd, <a href="/A320291/b320291.txt">Table of n, a(n) for n = 0..1000</a> %F A320291 Euler transform of A083751. - _Andrew Howroyd_, Oct 25 2018 %e A320291 The a(4) = 1 through a(10) = 15 multiset partitions: %e A320291 ((22)) ((23)) ((24)) ((25)) ((26)) ((27)) ((28)) %e A320291 ((33)) ((34)) ((35)) ((36)) ((37)) %e A320291 ((222)) ((223)) ((44)) ((45)) ((46)) %e A320291 ((224)) ((225)) ((55)) %e A320291 ((233)) ((234)) ((226)) %e A320291 ((2222)) ((333)) ((235)) %e A320291 ((22)(22)) ((2223)) ((244)) %e A320291 ((22)(23)) ((334)) %e A320291 ((2224)) %e A320291 ((2233)) %e A320291 ((22222)) %e A320291 ((22)(24)) %e A320291 ((22)(33)) %e A320291 ((23)(23)) %e A320291 ((22)(222)) %t A320291 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320291 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320291 Table[Length[Select[Join@@mps/@Select[IntegerPartitions[n],FreeQ[#,1]&],FreeQ[Length/@#,1]&]],{n,20}] %o A320291 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320291 seq(n)={my(v=vector(n,i,i>1)); concat([1], EulerT(EulerT(v)-v))} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320291 Cf. A002865, A007716, A049311, A083751, A283877, A293606, A302545, A304966, A304967, A320294, A320295, A320296. %K A320291 nonn %O A320291 0,7 %A A320291 _Gus Wiseman_, Oct 09 2018 %E A320291 Terms a(21) and beyond from _Andrew Howroyd_, Oct 25 2018