This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320294 #9 Oct 25 2018 22:21:51 %S A320294 0,0,0,1,1,3,3,7,8,15,19,37,48,87,126,227,342,611,964,1719,2806,4975, %T A320294 8327,14782,25157,44609,76972,136622,237987,422881,742149,1320825, %U A320294 2331491,4156392,7370868,13164429,23433637,41928557,74871434,134203411,240284935,431437069 %N A320294 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's. %C A320294 Also phylogenetic trees with no singleton leaves on integer partitions of n with no 1's. %H A320294 Andrew Howroyd, <a href="/A320294/b320294.txt">Table of n, a(n) for n = 1..500</a> %e A320294 The a(4) = 1 through a(10) = 15 trees: %e A320294 (22) (32) (33) (43) (44) (54) (55) %e A320294 (42) (52) (53) (63) (64) %e A320294 (222) (322) (62) (72) (73) %e A320294 (332) (333) (82) %e A320294 (422) (432) (433) %e A320294 (2222) (522) (442) %e A320294 ((22)(22)) (3222) (532) %e A320294 ((22)(23)) (622) %e A320294 (3322) %e A320294 (4222) %e A320294 (22222) %e A320294 ((22)(24)) %e A320294 ((22)(33)) %e A320294 ((23)(23)) %e A320294 ((22)(222)) %t A320294 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320294 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320294 pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m]; %t A320294 Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}] %o A320294 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320294 seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320294 Cf. A000045, A000311, A000669, A002865, A141268, A292504, A304966, A304967, A319312, A320289, A320293, A320295, A320296. %K A320294 nonn %O A320294 1,6 %A A320294 _Gus Wiseman_, Oct 09 2018 %E A320294 Terms a(16) and beyond from _Andrew Howroyd_, Oct 25 2018