This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320295 #8 Oct 25 2018 22:22:13 %S A320295 0,1,2,5,8,19,34,80,165,394,892,2192,5232,13057,32271,81568,205748, %T A320295 525735,1344828,3467415,8960849,23280323,60639680,158559047,415631368, %U A320295 1092734050,2879420753,7605713020,20130266302,53386744298,141836904569,377479973474,1006189769886 %N A320295 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n. %C A320295 Also phylogenetic trees with no singleton leaves on integer partitions of n. %H A320295 Andrew Howroyd, <a href="/A320295/b320295.txt">Table of n, a(n) for n = 1..500</a> %e A320295 The a(2) = 1 through a(6) = 19 trees: %e A320295 (11) (21) (22) (32) (33) %e A320295 (111) (31) (41) (42) %e A320295 (211) (221) (51) %e A320295 (1111) (311) (222) %e A320295 ((11)(11)) (2111) (321) %e A320295 (11111) (411) %e A320295 ((11)(12)) (2211) %e A320295 ((11)(111)) (3111) %e A320295 (21111) %e A320295 (111111) %e A320295 ((11)(13)) %e A320295 ((11)(22)) %e A320295 ((12)(12)) %e A320295 ((11)(112)) %e A320295 ((12)(111)) %e A320295 ((11)(1111)) %e A320295 ((111)(111)) %e A320295 ((11)(11)(11)) %e A320295 ((11)((11)(11))) %t A320295 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320295 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320295 pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m]; %t A320295 Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,IntegerPartitions[n]}],{n,14}] %o A320295 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320295 seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320295 Cf. A000311, A000669, A005804, A141268, A302545, A304966, A319312, A320289, A320294. %K A320295 nonn %O A320295 1,3 %A A320295 _Gus Wiseman_, Oct 09 2018 %E A320295 Terms a(12) and beyond from _Andrew Howroyd_, Oct 25 2018