This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320296 #7 Oct 26 2018 00:52:51 %S A320296 0,1,1,2,2,5,6,15,22,51,86,195,354,781,1512,3286,6602,14269,29424, %T A320296 63494,133298,287909,612188,1325375,2844448,6176145,13348858,29074164, %U A320296 63187176,138044144,301350424,660265471,1446678326,3178246273,6985464590,15384556290 %N A320296 Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's. %C A320296 Also phylogenetic trees with n unlabeled objects and no singleton leaves. %H A320296 Andrew Howroyd, <a href="/A320296/b320296.txt">Table of n, a(n) for n = 1..500</a> %e A320296 The a(2) = 1 through a(9) = 22 trees: %e A320296 2 3 4 5 6 7 8 9 %e A320296 (22) (23) (24) (25) (26) (27) %e A320296 (33) (34) (35) (36) %e A320296 (222) (223) (44) (45) %e A320296 (2(22)) ((22)3) (224) (225) %e A320296 (2(23)) (233) (234) %e A320296 (2222) (333) %e A320296 ((22)4) (2223) %e A320296 (2(24)) ((22)5) %e A320296 ((23)3) (2(25)) %e A320296 (2(33)) ((23)4) %e A320296 (2(222)) (2(34)) %e A320296 (22(22)) ((24)3) %e A320296 ((22)(22)) ((33)3) %e A320296 (2(2(22))) (2(22)3) %e A320296 (2(223)) %e A320296 (22(23)) %e A320296 (3(222)) %e A320296 ((2(22))3) %e A320296 ((22)(23)) %e A320296 (2((22)3)) %e A320296 (2(2(23))) %t A320296 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A320296 t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]]; %t A320296 Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,15}] %o A320296 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A320296 seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ _Andrew Howroyd_, Oct 25 2018 %Y A320296 Cf. A000311, A000669, A002865, A005804, A141268, A304967, A319312, A320293. %K A320296 nonn %O A320296 1,4 %A A320296 _Gus Wiseman_, Oct 09 2018 %E A320296 Terms a(26) and beyond from _Andrew Howroyd_, Oct 25 2018