A320323 Numbers whose product of prime indices (A003963) is a perfect power and where each prime index has the same number of prime factors, counted with multiplicity.
7, 9, 19, 23, 25, 27, 49, 53, 81, 97, 103, 121, 125, 131, 151, 161, 169, 225, 227, 243, 289, 311, 343, 361, 419, 529, 541, 625, 661, 679, 691, 719, 729, 827, 841, 961, 1009, 1089, 1127, 1159, 1183, 1193, 1321, 1331, 1369, 1427, 1543, 1589, 1619, 1681, 1849
Offset: 1
Keywords
Examples
The terms together with their corresponding multiset multisystems (A302242): 7: {{1,1}} 9: {{1},{1}} 19: {{1,1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 81: {{1},{1},{1},{1}} 97: {{3,3}} 103: {{2,2,2}} 121: {{3},{3}} 125: {{2},{2},{2}} 131: {{1,1,1,1,1}} 151: {{1,1,2,2}} 161: {{1,1},{2,2}} 169: {{1,2},{1,2}} 225: {{1},{1},{2},{2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],And[GCD@@FactorInteger[Times@@primeMS[#]][[All,2]]>1,SameQ@@PrimeOmega/@primeMS[#]]&]
-
PARI
is(n) = my (f=factor(n), pi=apply(primepi, f[,1]~)); #Set(apply(bigomega, pi))==1 && ispower(prod(i=1, #pi, pi[i]^f[i,2])) \\ Rémy Sigrist, Oct 11 2018
Comments