cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320328 Number of square multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 36, 65, 117, 214, 382, 679
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

A multiset partition is square if its length is equal to its number of distinct atoms.

Examples

			The a(1) = 1 through a(6) = 20 square partitions:
  {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
         {{1,1}}  {{1,1,1}}  {{2,2}}      {{1},{4}}      {{3,3}}
                  {{1},{2}}  {{1},{3}}    {{2},{3}}      {{1},{5}}
                             {{1,1,1,1}}  {{1},{1,3}}    {{2,2,2}}
                             {{1},{1,2}}  {{1},{2,2}}    {{2},{4}}
                             {{2},{1,1}}  {{2},{1,2}}    {{1},{1,4}}
                                          {{3},{1,1}}    {{4},{1,1}}
                                          {{1,1,1,1,1}}  {{1},{1,1,3}}
                                          {{1},{1,1,2}}  {{1,1},{1,3}}
                                          {{1,1},{1,2}}  {{1},{1,2,2}}
                                          {{2},{1,1,1}}  {{1,1},{2,2}}
                                                         {{1,2},{1,2}}
                                                         {{1},{2},{3}}
                                                         {{2},{1,1,2}}
                                                         {{3},{1,1,1}}
                                                         {{1,1,1,1,1,1}}
                                                         {{1},{1,1,1,2}}
                                                         {{1,1},{1,1,2}}
                                                         {{1,2},{1,1,1}}
                                                         {{2},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],Length[#]==Length[Union@@#]&]],{n,8}]