A320331 Number of strict T_0 multiset partitions of integer partitions of n.
1, 1, 2, 4, 8, 17, 30, 61, 110, 207, 381, 711, 1250
Offset: 0
Examples
The a(1) = 1 through a(5) = 17 multiset partitions: {{1}} {{2}} {{3}} {{4}} {{5}} {{1,1}} {{1,1,1}} {{2,2}} {{1,1,3}} {{1},{2}} {{1,1,2}} {{1,2,2}} {{1},{1,1}} {{1},{3}} {{1},{4}} {{1,1,1,1}} {{2},{3}} {{1},{1,2}} {{1,1,1,2}} {{2},{1,1}} {{1},{1,3}} {{1},{1,1,1}} {{1},{2,2}} {{2},{1,2}} {{3},{1,1}} {{1,1,1,1,1}} {{1},{1,1,2}} {{1,1},{1,2}} {{2},{1,1,1}} {{1},{1,1,1,1}} {{1,1},{1,1,1}} {{1},{2},{1,1}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,UnsameQ@@dual[#]]&]],{n,8}]
Comments