cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320331 Number of strict T_0 multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 30, 61, 110, 207, 381, 711, 1250
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			The a(1) = 1 through a(5) = 17 multiset partitions:
  {{1}}  {{2}}    {{3}}        {{4}}          {{5}}
         {{1,1}}  {{1,1,1}}    {{2,2}}        {{1,1,3}}
                  {{1},{2}}    {{1,1,2}}      {{1,2,2}}
                  {{1},{1,1}}  {{1},{3}}      {{1},{4}}
                               {{1,1,1,1}}    {{2},{3}}
                               {{1},{1,2}}    {{1,1,1,2}}
                               {{2},{1,1}}    {{1},{1,3}}
                               {{1},{1,1,1}}  {{1},{2,2}}
                                              {{2},{1,2}}
                                              {{3},{1,1}}
                                              {{1,1,1,1,1}}
                                              {{1},{1,1,2}}
                                              {{1,1},{1,2}}
                                              {{2},{1,1,1}}
                                              {{1},{1,1,1,1}}
                                              {{1,1},{1,1,1}}
                                              {{1},{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,UnsameQ@@dual[#]]&]],{n,8}]