This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320342 #41 Jan 27 2019 08:58:29 %S A320342 47,7,47,7,47,13,17,19,47,59,31,37,167,43,47,107,59,61,67,71,73,79, %T A320342 167,2879,97,101,103,107,109,227,127,263,137,139,149,151,157,163,167, %U A320342 347,2879,181,383,193,197,199,211,223,227,229,467,479,241,503,257,263,269,271,277,563,283,587,307,311,313,317,331,337,347,349 %N A320342 Maximum term in Cunningham chain of the first kind generated by the n-th prime. %C A320342 No term is a Sophie Germain prime. %C A320342 A181697 is the sequence of the lengths of the chains in the name. %e A320342 a(1)=47 as prime(1)=2 and the Cunningham chain generated by 2 is (2,5,11,23,47), with maximum item 47. %t A320342 a[n_] := NestWhile[2#+1&, n, PrimeQ, 1, Infinity, -1]; a/@Prime@Range@70 (* _Amiram Eldar_, Dec 11 2018 *) %o A320342 (Python) %o A320342 def cunningham_chain(p,t): %o A320342 # returns the Cunningham chain generated by p of type t (1 or 2) %o A320342 from sympy.ntheory import isprime %o A320342 if not(isprime(p)): %o A320342 raise Exception("Invalid starting number! It must be prime") %o A320342 if t!=1 and t!=2: %o A320342 raise Exception("Invalid type! It must be 1 or 2") %o A320342 elif t==1: k=t %o A320342 else: k=-1 %o A320342 cunn_ch=[] %o A320342 cunn_ch.append(p) %o A320342 while isprime(2*p+k): %o A320342 p=2*p+k %o A320342 cunn_ch.append(p) %o A320342 return(cunn_ch) %o A320342 from sympy import prime %o A320342 n=71 %o A320342 r="" %o A320342 for i in range(1,n): %o A320342 cunn_ch=(cunningham_chain(prime(i),1)) %o A320342 last_item=cunn_ch[-1] %o A320342 r += ","+str(last_item) %o A320342 print(r[1:]) %Y A320342 Cf. A181697. %K A320342 nonn %O A320342 1,1 %A A320342 _Pierandrea Formusa_, Dec 10 2018