This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320343 #36 Sep 11 2023 09:05:41 %S A320343 1,1,2,8,42,294,2472,24828,286164,3751428,54864408,887989200, %T A320343 15731200680,303068103480,6304498706880,140890167340560, %U A320343 3365469544248720,85585469309951760,2308349518803845280,65819488298810181120,1978202007765686904480,62505106242073569018720,2071320752120227622985600 %N A320343 Expansion of e.g.f. 1/sqrt(1 - 2*log(1 + x)). %F A320343 a(n) = Sum_{k=0..n} Stirling1(n,k)*A001147(k). %F A320343 a(n) ~ n^n / ((exp(1/2) - 1)^(n + 1/2) * exp(n - 1/4)). - _Vaclav Kotesovec_, Jan 29 2019 %F A320343 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (2 - k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 11 2023 %p A320343 seq(n!*coeff(series(1/sqrt(1-2*log(1+x)),x=0,23),x,n),n=0..22); # _Paolo P. Lava_, Jan 29 2019 %t A320343 nmax = 22; CoefficientList[Series[1/Sqrt[1 - 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]! %t A320343 Table[Sum[StirlingS1[n, k] (2 k - 1)!!, {k, 0, n}], {n, 0, 22}] %Y A320343 Cf. A001147, A006252, A048994, A088501, A305404, A346978. %K A320343 nonn %O A320343 0,3 %A A320343 _Ilya Gutkovskiy_, Jan 22 2019