cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320346 a(n) is the number of perfect matchings in the graph with vertices labeled 1 to 2n with edges {i,j} for 1<=|i-j|<=4.

This page as a plain text file.
%I A320346 #36 May 01 2021 12:53:25
%S A320346 1,1,3,12,35,105,329,1014,3116,9610,29625,91279,281303,866948,2671727,
%T A320346 8233671,25374513,78198928,240992592,742688720,2288811009,7053635369,
%U A320346 21737825143,66991419284,206453506615,636246416105,1960778041673,6042706771910,18622355183932,57390193784986,176864543185497
%N A320346 a(n) is the number of perfect matchings in the graph with vertices labeled 1 to 2n with edges {i,j} for 1<=|i-j|<=4.
%H A320346 Robert Israel, <a href="/A320346/b320346.txt">Table of n, a(n) for n = 0..2044</a>
%H A320346 M. Schwartz, <a href="https://doi.org/10.1016/j.laa.2008.10.029">Efficiently computing the permanent and Hafnian of some banded Toeplitz matrices</a>, Linear Algebra and its Applications 430 (2009), 1364-1374.
%H A320346 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,6,3,2,1,-2,-1).
%F A320346 G.f.: (-x^4 - x^3 - x + 1)/(1 - 2*x - x^2 - 6*x^3 - 3*x^4 - 2*x^5 - x^6 + 2*x^7 + x^8).
%e A320346 The a(3) = 12 matchings are (12)(34)(56), (12)(35)(46), (12)(36)(45), (13)(24)(56), (13)(25)(46), (13)(26)(45), (14)(23)(56), (14)(25)(36), (14)(26)(35), (15)(23)(46), (15)(24)(36), (15)(26)(34).
%p A320346 f:= gfun:-rectoproc({a(n) + 2*a(n + 1) - a(n + 2) - 2*a(n + 3) - 3*a(n + 4) - 6*a(n + 5)- a(n + 6) - 2*a(n + 7) + a(n + 8), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 12, a(4) = 35, a(5) = 105, a(6) = 329, a(7) = 1014}, a(n), remember):
%p A320346 map(f, [$0..100]);
%t A320346 LinearRecurrence[{2, 1, 6, 3, 2, 1, -2, -1}, {1, 1, 3, 12, 35, 105, 329, 1014}, 40] (* _Jean-François Alcover_, Apr 30 2019 *)
%Y A320346 Cf. A052967.
%K A320346 nonn
%O A320346 0,3
%A A320346 _Robert Israel_, Jan 22 2019
%E A320346 a(0)=1 prepended and edited by _Alois P. Heinz_, Feb 28 2019