A320353 Number of antichains of multisets whose multiset union is an integer partition of n.
1, 1, 3, 5, 11, 17, 36, 56, 107, 175, 311, 505, 887
Offset: 0
Examples
The a(1) = 1 through a(5) = 17 antichains: {{1}} {{2}} {{3}} {{4}} {{5}} {{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1},{1}} {{1,1,1}} {{2,2}} {{2,3}} {{1},{2}} {{1,1,2}} {{1,1,3}} {{1},{1},{1}} {{1},{3}} {{1,2,2}} {{2},{2}} {{1},{4}} {{1,1,1,1}} {{2},{3}} {{2},{1,1}} {{1,1,1,2}} {{1,1},{1,1}} {{1},{2,2}} {{1},{1},{2}} {{3},{1,1}} {{1},{1},{1},{1}} {{1,1,1,1,1}} {{1,1},{1,2}} {{1},{1},{3}} {{1},{2},{2}} {{2},{1,1,1}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}}
Links
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],antiQ]],{n,8}]