A320355 Number of connected antichains of multisets whose multiset union is an integer partition of n.
1, 1, 3, 4, 8, 9, 19, 24, 45, 71, 118, 194, 335
Offset: 0
Examples
The a(1) = 1 through a(5) = 9 clutters: {{1}} {{2}} {{3}} {{4}} {{5}} {{1,1}} {{1,2}} {{1,3}} {{1,4}} {{1},{1}} {{1,1,1}} {{2,2}} {{2,3}} {{1},{1},{1}} {{1,1,2}} {{1,1,3}} {{2},{2}} {{1,2,2}} {{1,1,1,1}} {{1,1,1,2}} {{1,1},{1,1}} {{1,1,1,1,1}} {{1},{1},{1},{1}} {{1,1},{1,2}} {{1},{1},{1},{1},{1}}
Links
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, Journal of Integer Sequences, Vol. 7 (2004).
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[Length[csm[#]]==1,antiQ[#]]&]],{n,8}]