cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320356 Number of strict connected antichains of multisets whose multiset union is an integer partition of n.

This page as a plain text file.
%I A320356 #6 Oct 12 2018 22:43:20
%S A320356 1,1,2,3,5,8,13,22,35,62,98,171,277
%N A320356 Number of strict connected antichains of multisets whose multiset union is an integer partition of n.
%H A320356 Goran Kilibarda and Vladeta Jovovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kilibarda/kili2.pdf">Antichains of Multisets</a>, Journal of Integer Sequences, Vol. 7 (2004).
%e A320356 The a(1) = 1 through a(6) = 13 clutters:
%e A320356   {{1}}  {{2}}    {{3}}      {{4}}        {{5}}          {{6}}
%e A320356          {{1,1}}  {{1,2}}    {{1,3}}      {{1,4}}        {{1,5}}
%e A320356                   {{1,1,1}}  {{2,2}}      {{2,3}}        {{2,4}}
%e A320356                              {{1,1,2}}    {{1,1,3}}      {{3,3}}
%e A320356                              {{1,1,1,1}}  {{1,2,2}}      {{1,1,4}}
%e A320356                                           {{1,1,1,2}}    {{1,2,3}}
%e A320356                                           {{1,1,1,1,1}}  {{2,2,2}}
%e A320356                                           {{1,1},{1,2}}  {{1,1,1,3}}
%e A320356                                                          {{1,1,2,2}}
%e A320356                                                          {{1,1,1,1,2}}
%e A320356                                                          {{1,1},{1,3}}
%e A320356                                                          {{1,1,1,1,1,1}}
%e A320356                                                          {{1,2},{1,1,1}}
%t A320356 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A320356 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A320356 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A320356 submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]];
%t A320356 antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
%t A320356 Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,8}]
%Y A320356 Cf. A001970, A007718, A048143, A056156, A258466, A261006, A293994, A318403, A319079, A319719, A319721, A320351, A320353, A320355.
%K A320356 nonn,more
%O A320356 0,3
%A A320356 _Gus Wiseman_, Oct 11 2018