This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320374 #9 Dec 13 2020 09:31:28 %S A320374 4,0,5,5,15,16,30,36,60,75,116,149,217,273,386,491,664,839,1116,1399, %T A320374 1829,2292,2937,3656,4638,5729,7187,8840,10984,13430,16558,20138, %U A320374 24657,29846,36288,43736,52880,63430,76289,91159,109106,129841,154724,183452,217727 %N A320374 Number of parts in all partitions of n with largest multiplicity four. %H A320374 Alois P. Heinz, <a href="/A320374/b320374.txt">Table of n, a(n) for n = 4..1000</a> %F A320374 a(n) ~ 3^(1/4) * log(5) * exp(2*Pi*sqrt(2*n/15)) / (2^(5/4) * 5^(1/4) * Pi * n^(1/4)). - _Vaclav Kotesovec_, Oct 25 2018 %p A320374 b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, %p A320374 add((l->l+[0, l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) %p A320374 end: %p A320374 a:= n-> (k-> (b(n$2, k)-b(n$2, k-1))[2])(4): %p A320374 seq(a(n), n=4..50); %t A320374 b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, {0, l[[1]] j} + l][b[n - i j, i - 1, k]], {j, 0, Min[n/i, k]}]]]; %t A320374 a[n_] := With[{k = 4}, (b[n, n, k] - b[n, n, k - 1])[[2]]]; %t A320374 a /@ Range[4, 60] (* _Jean-François Alcover_, Dec 13 2020, after _Alois P. Heinz_ *) %Y A320374 Column k=4 of A213177. %K A320374 nonn %O A320374 4,1 %A A320374 _Alois P. Heinz_, Oct 11 2018