cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320381 Number of parts in all partitions of 2n with largest multiplicity n.

This page as a plain text file.
%I A320381 #13 Jul 16 2023 15:35:12
%S A320381 0,1,5,7,15,18,38,43,81,101,164,206,332,405,613,783,1115,1410,1984,
%T A320381 2483,3402,4281,5697,7147,9417,11702,15167,18861,24093,29782,37745,
%U A320381 46377,58206,71325,88665,108194,133675,162278,199154,241040,293934,354306,429968,516256
%N A320381 Number of parts in all partitions of 2n with largest multiplicity n.
%H A320381 Vaclav Kotesovec, <a href="/A320381/b320381.txt">Table of n, a(n) for n = 0..788</a> (terms 0..400 from Alois P. Heinz)
%F A320381 a(n) = A213177(2n,n).
%e A320381 a(2) = 5 = 3 + 2: [2,1,1], [2,2].
%p A320381 b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
%p A320381       add((l-> [0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
%p A320381     end:
%p A320381 a:= n-> (b(2*n$2, n)-b(2*n$2, n-1))[2]:
%p A320381 seq(a(n), n=0..45);
%t A320381 b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[b[n - i*j, i - 1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]];
%t A320381 a[n_] := (b[2n, 2n, n] - b[2n, 2n, n-1])[[2]];
%t A320381 a /@ Range[0, 45] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ *)
%Y A320381 Cf. A213177.
%K A320381 nonn
%O A320381 0,3
%A A320381 _Alois P. Heinz_, Oct 11 2018