A320383 Multiplicative order of 3/2 modulo n-th prime.
2, 6, 10, 4, 16, 3, 11, 7, 30, 36, 40, 21, 23, 13, 58, 12, 33, 7, 36, 26, 82, 88, 8, 25, 102, 106, 108, 112, 126, 130, 136, 69, 74, 150, 156, 81, 83, 86, 178, 36, 95, 96, 49, 66, 5, 222, 226, 228, 232, 119, 30, 250, 256, 131, 67, 270, 276, 40, 141, 73, 51, 155, 156, 79, 11, 168, 346, 348, 352, 179, 366, 124
Offset: 3
Examples
Let ord(n,p) be the multiplicative order of n modulo p. 3/2 == 4 (mod 5), so a(3) = ord(4,5) = 2. 3/2 == 5 (mod 7), so a(4) = ord(5,7) = 6. 3/2 == 7 (mod 11), so a(5) = ord(7,11) = 10. 3/2 == 8 (mod 13), so a(6) = ord(8,13) = 4.
Links
- Robert Israel, Table of n, a(n) for n = 3..10000
- Wikipedia, Multiplicative order
- Wikipedia, Zsigmondy's theorem
Programs
-
Maple
f:= proc(n) local p; p:= ithprime(n); numtheory:-order(3/2 mod p,p) end proc: map(f, [$3..100]); # Robert Israel, Apr 20 2021
-
Mathematica
a[n_] := With[{p = Prime[n]}, Do[If[Divisible[3^k - 2^k, p], Return[k]], {k, Rest@Divisors[p-1]}]]; Table[a[n], {n, 3, 100}] (* Jean-François Alcover, Feb 10 2023 *)
-
PARI
forprime(p=5,10^3,print1(znorder(Mod(3/2,p)),", ")) \\ Joerg Arndt, Oct 13 2018
Comments