A377177 Primes p such that -7/2 is a primitive root modulo p.
11, 17, 29, 31, 37, 41, 43, 47, 73, 89, 103, 107, 109, 149, 167, 179, 197, 257, 277, 311, 313, 317, 347, 353, 367, 373, 383, 389, 409, 433, 479, 491, 499, 503, 521, 541, 557, 571, 577, 593, 601, 607, 647, 653, 659, 683, 701, 719, 727, 761, 769, 821, 839, 857, 883, 887, 907, 929, 937, 947, 983
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Artin's conjecture on primitive roots.
- Index entries for primes by primitive root
Crossrefs
Programs
-
Maple
select(p -> isprime(p) and numtheory:-order(-7/2 mod p, p) = p-1, [seq(i,i=3..1000,2)]); # Robert Israel, Nov 10 2024
-
Mathematica
Cases[Prime[Range[2,170]],?(MemberQ[PrimitiveRootList[#],ResourceFunction["FractionMod"][-7/2,#]]&)] (* _Shenghui Yang, Oct 23 2024 *)
-
PARI
forprime(p=8,10^3,if(znorder(Mod(-7/2,p))==p-1,print1(p,", "))); \\ Joerg Arndt, Oct 19 2024
Comments