This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320388 #36 Jan 08 2021 15:23:22 %S A320388 1,1,1,2,2,3,3,4,5,5,6,8,7,9,11,10,12,15,14,16,19,18,21,25,23,26,31, %T A320388 29,33,38,36,40,46,44,49,56,53,58,66,64,70,77,76,82,92,89,96,106,104, %U A320388 113,123,120,130,142,141,149,162,160,172,186,184,195,211,210,223,238 %N A320388 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are decreasing. %C A320388 Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order. %C A320388 Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) > p(k) - p(k-1) for all k >= 3. %H A320388 Fausto A. C. Cariboni, <a href="/A320388/b320388.txt">Table of n, a(n) for n = 0..2000</a> (terms 0..100 from Seiichi Manyama) %e A320388 There are a(17) = 15 such partitions of 17: %e A320388 01: [17] %e A320388 02: [1, 16] %e A320388 03: [2, 15] %e A320388 04: [3, 14] %e A320388 05: [4, 13] %e A320388 06: [5, 12] %e A320388 07: [6, 11] %e A320388 08: [7, 10] %e A320388 09: [1, 6, 10] %e A320388 10: [8, 9] %e A320388 11: [1, 7, 9] %e A320388 12: [2, 6, 9] %e A320388 13: [2, 7, 8] %e A320388 14: [3, 6, 8] %e A320388 15: [4, 6, 7] %e A320388 There are a(18) = 14 such partitions of 18: %e A320388 01: [18] %e A320388 02: [1, 17] %e A320388 03: [2, 16] %e A320388 04: [3, 15] %e A320388 05: [4, 14] %e A320388 06: [5, 13] %e A320388 07: [6, 12] %e A320388 08: [7, 11] %e A320388 09: [8, 10] %e A320388 10: [1, 7, 10] %e A320388 11: [1, 8, 9] %e A320388 12: [2, 7, 9] %e A320388 13: [3, 7, 8] %e A320388 14: [1, 4, 6, 7] %o A320388 (Ruby) %o A320388 def partition(n, min, max) %o A320388 return [[]] if n == 0 %o A320388 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} %o A320388 end %o A320388 def f(n) %o A320388 return 1 if n == 0 %o A320388 cnt = 0 %o A320388 partition(n, 1, n).each{|ary| %o A320388 ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} %o A320388 cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0 %o A320388 } %o A320388 cnt %o A320388 end %o A320388 def A320388(n) %o A320388 (0..n).map{|i| f(i)} %o A320388 end %o A320388 p A320388(50) %Y A320388 Cf. A007294, A179254, A179255, A179269, A320382, A320385, A320387. %Y A320388 Cf. A081489. %K A320388 nonn %O A320388 0,4 %A A320388 _Seiichi Manyama_, Oct 12 2018