This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320393 #30 Jan 23 2019 10:54:01 %S A320393 2,3,11,23,29,41,53,83,113,131,173,179,191,233,239,251,281,293,419, %T A320393 431,443,491,593,641,653,659,683,719,743,761,809,911,953,1013,1019, %U A320393 1031,1049,1103,1223,1289,1439,1451,1481,1499,1511,1559,1583,1601,1733,1811,1889,1901,1931,1973,2003,2039,2063,2069,2129,2141 %N A320393 First members of the Cunningham chains of the first kind whose length is a prime. %e A320393 41 is an item as it generates the Cunningham chain (41, 83, 167), of length 3, that is prime. %t A320393 aQ[n_] := PrimeQ[Length[NestWhileList[2#+1&, n, PrimeQ]] - 1]; Select[Range[2200], aQ] (* _Amiram Eldar_, Dec 11 2018 *) %o A320393 (Python) %o A320393 from sympy.ntheory import isprime %o A320393 def cunningham_chain(p,t): %o A320393 #it returns the cunningham chain generated by p of type t (1 or 2) %o A320393 if not(isprime(p)): %o A320393 raise Exception("Invalid starting number! It must be prime") %o A320393 if t!=1 and t!=2: %o A320393 raise Exception("Invalid type! It must be 1 or 2") %o A320393 elif t==1: k=t %o A320393 else: k=-1 %o A320393 cunn_ch=[] %o A320393 cunn_ch.append(p) %o A320393 while isprime(2*p+k): %o A320393 p=2*p+k %o A320393 cunn_ch.append(p) %o A320393 return(cunn_ch) %o A320393 from sympy import prime %o A320393 n=350 %o A320393 r="" %o A320393 for i in range(1,n): %o A320393 cunn_ch=(cunningham_chain(prime(i),1)) %o A320393 lcunn_ch=len(cunn_ch) %o A320393 if isprime(lcunn_ch): %o A320393 r += ","+str(prime(i)) %o A320393 print(r[1:]) %Y A320393 Cf. A059761, A059762, A059764. %K A320393 nonn %O A320393 1,1 %A A320393 _Pierandrea Formusa_, Dec 10 2018