This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320423 #17 Nov 28 2024 19:04:40 %S A320423 1,1,1,2,2,8,4,28,18,120,60,888,252,5220,1860,22224,9552,311088,59616, %T A320423 2473056,565920,13627008,4051872,235039392,33805440,1932037632, %U A320423 465239808,20604487680,4294865664,386228795904,35413136640 %N A320423 Number of set partitions of {1,...,n} where each block's elements are pairwise coprime. %C A320423 Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1. A single number is not considered to be pairwise coprime unless it is equal to 1. %e A320423 The a(5) = 8 set partitions: %e A320423 {{1},{2,3},{4,5}} %e A320423 {{1},{2,5},{3,4}} %e A320423 {{1,2},{3,4,5}} %e A320423 {{1,4},{2,3,5}} %e A320423 {{1,2,3},{4,5}} %e A320423 {{1,2,5},{3,4}} %e A320423 {{1,3,4},{2,5}} %e A320423 {{1,4,5},{2,3}} %t A320423 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A320423 Table[Length[spsu[Select[Subsets[Range[n]],CoprimeQ@@#&],Range[n]]],{n,10}] %Y A320423 Cf. A000110, A051424, A084422, A085945, A186974, A187106, A302569, A302696, A303139, A303140, A320424, A320426, A320430, A320768. %K A320423 nonn,more %O A320423 0,4 %A A320423 _Gus Wiseman_, Jan 08 2019 %E A320423 a(17)-a(18) from _Alois P. Heinz_, Jan 17 2019 %E A320423 a(19)-a(30) from _Christian Sievers_, Nov 28 2024