cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320435 Regular triangle read by rows where T(n,k) is the number of relatively prime k-subsets of {1,...,n}, 1 <= k <= n.

This page as a plain text file.
%I A320435 #13 Jan 19 2023 14:25:47
%S A320435 1,1,1,1,3,1,1,5,4,1,1,9,10,5,1,1,11,19,15,6,1,1,17,34,35,21,7,1,1,21,
%T A320435 52,69,56,28,8,1,1,27,79,125,126,84,36,9,1,1,31,109,205,251,210,120,
%U A320435 45,10,1,1,41,154,325,461,462,330,165,55,11,1,1,45,196
%N A320435 Regular triangle read by rows where T(n,k) is the number of relatively prime k-subsets of {1,...,n}, 1 <= k <= n.
%C A320435 Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.
%H A320435 Andrew Howroyd, <a href="/A320435/b320435.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%F A320435 T(n,k) = Sum_{d=1..floor(n/k)} mu(d)*binomial(floor(n/d), k). - _Andrew Howroyd_, Jan 19 2023
%e A320435 Triangle begins:
%e A320435     1
%e A320435     1    1
%e A320435     1    3    1
%e A320435     1    5    4    1
%e A320435     1    9   10    5    1
%e A320435     1   11   19   15    6    1
%e A320435     1   17   34   35   21    7    1
%e A320435     1   21   52   69   56   28    8    1
%e A320435     1   27   79  125  126   84   36    9    1
%e A320435     1   31  109  205  251  210  120   45   10    1
%e A320435     1   41  154  325  461  462  330  165   55   11    1
%e A320435     1   45  196  479  786  923  792  495  220   66   12    1
%e A320435     1   57  262  699 1281 1715 1716 1287  715  286   78   13    1
%e A320435 The T(6,2) = 11 sets are: {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {5,6}. Missing from this list are: {2,4}, {2,6}, {3,6}, {4,6}.
%t A320435 Table[Length[Select[Subsets[Range[n],{k}],GCD@@#==1&]],{n,10},{k,n}]
%o A320435 (PARI) T(n,k) = sum(d=1, n\k, moebius(d)*binomial(n\d, k)) \\ _Andrew Howroyd_, Jan 19 2023
%Y A320435 Row sums are A085945.
%Y A320435 Second column is A015614.
%Y A320435 Cf. A000837, A186974, A187106, A289508,  A289509, A300486, A303139, A320424, A320436.
%K A320435 nonn,tabl
%O A320435 1,5
%A A320435 _Gus Wiseman_, Jan 08 2019