cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320438 Irregular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with all block-sums equal to d, where d is the k-th divisor of n*(n+1)/2 that is >= n.

This page as a plain text file.
%I A320438 #16 Mar 06 2025 08:27:41
%S A320438 1,1,1,1,1,1,1,1,1,1,1,4,1,1,3,7,1,1,9,1,1,1,1,43,35,1,1,102,62,1,1,1,
%T A320438 1,68,595,1,1,17,187,871,1480,361,1,1,2650,657,1,1,9294,1,1,23728,1,1,
%U A320438 27763,4110,1,1,1850,25035,108516,157991,7636,1,1,11421,411474,1
%N A320438 Irregular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with all block-sums equal to d, where d is the k-th divisor of n*(n+1)/2 that is >= n.
%e A320438 Triangle begins:
%e A320438     1
%e A320438     1
%e A320438     1    1
%e A320438     1    1
%e A320438     1    1
%e A320438     1    1
%e A320438     1    4    1
%e A320438     1    3    7    1
%e A320438     1    9    1
%e A320438     1    1
%e A320438     1   43   35    1
%e A320438     1  102   62    1
%e A320438     1    1
%e A320438     1   68  595    1
%e A320438     1   17  187  871 1480  361    1
%e A320438     1 2650  657    1
%e A320438 Row 8 counts the following set partitions:
%e A320438   {{18}{27}{36}{45}}  {{1236}{48}{57}}  {{12348}{567}}  {{12345678}}
%e A320438                       {{138}{246}{57}}  {{12357}{468}}
%e A320438                       {{156}{237}{48}}  {{12456}{378}}
%e A320438                                         {{1278}{3456}}
%e A320438                                         {{1368}{2457}}
%e A320438                                         {{1458}{2367}}
%e A320438                                         {{1467}{2358}}
%t A320438 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A320438 Table[Length[spsu[Select[Subsets[Range[n]],Total[#]==d&],Range[n]]],{n,12},{d,Select[Divisors[n*(n+1)/2],#>=n&]}]
%Y A320438 Row lengths are A164978. Row sums are A035470.
%Y A320438 Cf. A000110, A000258, A008277, A112956, A164977, A275714, A279375, A300335, A320423, A320424, A321455, A321469.
%K A320438 nonn,tabf
%O A320438 1,12
%A A320438 _Gus Wiseman_, Jan 08 2019
%E A320438 More terms from _Jinyuan Wang_, Feb 27 2025
%E A320438 Name edited by _Peter Munn_, Mar 06 2025